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Abstract. Multi-camera systems and GPU-based stereo-matching me-
thods allow for a real-time 3d reconstruction of faces. We use the data
generated by such a 3d reconstruction for a hybrid face recognition sys-
tem based on color, accuracy, and depth information. This system is
structured in two subsequent phases: geometry-based data preparation
and face recognition using wavelets and the AdaBoost algorithm. It re-
quires only one reference image per person. On a data base of 500 record-
ings, our system achieved detection rates ranging from 95% to 97% with
a false detection rate of 2% to 3%. The computation of the whole process
takes around 1.1 seconds.

1 Introduction

In the last years, 3d face recognition has become an important tool in many
biometric applications. These systems are able to achieve high detection rates.
However, there is one major drawback: the overall recognition process, including
3d reconstruction and face recognition, takes several seconds to several minutes.
This time is unacceptable for biometric systems, e.g. security systems, credit
card verification, access control or criminal detection.

In order to speed up this process, a multi-camera stereo-matching system
has been developed that can generate a high-resolution depth image in real-
time [1]. Here, we use such a system (shown in Figure 1) for face recognition. A
typical recording of this system is shown in Figure 2. Since most computations
are done on the GPU, the system needs an average computation time of 263
milliseconds for one high resolution depth image (see [1]). In this paper, we show
that the quality of these depth images is sufficiently high for 3d face recognition
in the context of an access control system. An access control system requires a
high detection rate at a low computation time. Hence, the recognition algorithm
combines three different types of information obtained from the multi-camera
stereo-matching system: a depth image (Figure 2(b)), a color image (Figure
2(a)), and a 3d reconstruction quality image (Figure 2(c)).

Our 3d face recognition algorithm is structured in two subsequent phases
(Figure 3): the data preparation phase (Section 3) and the face recognition phase
(Section 4). In the data preparation phase the face data is segmented from the
background in the color and depth images. Then, the 3d face data is transformed
into frontal position by an optimized iterative closest point (ICP) algorithm.
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Fig. 1. The multi-camera stereo-matching system used in this paper generates one
depth image from four camera images.

(a) Color image. (b) Depth image. (c) Quality image.

Fig. 2. A typical recording of the multi-camera stereo-matching system. Bright pixels
in the quality image depict regions with poor variation in the depth image.

Regions with poor quality are improved by a hole-filling algorithm. The face
recognition phase uses an AdaBoost classifier based on histogram features that
describe the distribution of the wavelet coefficients of the color and depth images.

2 Related Work

Similar to 2d face recognition, 3d face recognition methods can be divided into
global and local approaches. Global methods recognize the whole face at once
while local approaches separate features of the face and recognize these features
independently.

A global approach is used in [2]. After a data preparation using symmetry-
and nose-tip detection, an eigenface based recognition is computed on the nor-
malized depth images. For eigenfaces [3] a principal component analysis (PCA)
is applied to the images from a face data base to compute basis-images. These
basis-images are linearly combined to generate synthetic face images.

Morphable models are parametric face models yielding a realistic impression
used for 3D face synthesis [4]. In [5] these models are used for face recognition.
The morphable model is fitted to a photograph and a distance of the model
parameters is used for recognition. Fitting the morphable model takes several
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Fig. 3. The structure of the 3d face recognition system.

minutes. A fast modification of this method is presented in [6]. Only for the
training faces a morphable model is computed. For the recognition a support
vector machine (SVM) is used to compare synthetic images of face components
from the morphable model with face components extracted from photographs.

SVM based face recognition methods, as [6–8], need a large training data
base. The SVM is trained using several hundred positive and negative example
data sets. To speed the training of the SVM up, the data is reduced to a set of
facial features. Because of this reduction, these methods are local.

An ICP algorithm similar to our data preparation phase is used in [9]. After
a pre-matching using facial features, ICP is used to get a precise fit of the test
data to a reference face. Differences of surface points on both data sets are used
for recognition. Here, a PCA is used to reduce the dimension of the search space,
where a Gaussian mixture model is used for the final recognition.

3 Data Preparation

The data preparation phase gets as input the color, depth, and quality images
as computed by a system like the one presented in [1].

For face recognition it is necessary to separate the regions in the images that
contain information of the face from irrelevant, background regions. In an access
control system, we assume that the face is the object closest to the camera. Thus,
the points of the face are identified in the depth image to separate the face from
the background in the color and quality images.

The quality image contains information about the faithfulness of the 3d re-
construction. Low quality values characterize regions with a large instability in
the depth image. Thus, these regions are removed from the 3d face model, leav-
ing holes. These holes are filled with a moving least squares approach fitting a
polynomial surface of up to degree four to the points around the hole [10].

Although, after the hole filling the depth image contains a complete 3d model
of the face, its affine position relative to the camera is unknown. To align the
3d face model we fit it to a mannequin head model in frontal position using
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an iterative closest point (ICP) algorithm [11]. For each point on both models
the nearest point on the other model is computed. Then, a global affine trans-
formation minimizing the distance of these point-pairs is computed. This affine
transformation is applied to the 3d face model and the procedure is repeated
until the changes become small enough. For the 3d models in our application
with more than 200,000 data points the ICP algorithm is speed up as in [12]:

– Point-pairs are computed only for a random subset of points.
– To compute the point-pairs a kd-tree is used.
– Outliers are rejected by a point-to-point distance threshold.
– For the first few iterations point-to-point distances are used. Later the algo-

rithm uses point-to-plane distances.

A resulting 3d model after ICP alignment is shown in Figure 4(a) for an 3d
model without hole filling. The white points show the mannequin model.

After the alignment also the color and the depth image are aligned with the
computed affine transformation, see Figures 4(b) and 4(c). Further results of
the complete data preparation phase for three depth images of the same person
are shown in Figure 5. These images show that the data preparation is robust
against different positions of the person to the camera, different rotations of the
head, and different facial expressions.

(a) (b) (c)

Fig. 4. (a) ICP fit of a 3d mannequin head model (white points) to an incomplete 3d
model, (b) aligned color image, and (c) depth image after the hole-filling.

4 Face Recognition

The face recognition phase is based on the aligned and completed depth and
color images. First, a 2d wavelet transform is applied to both the depth and
the color image. This transform generates a series of smaller images, called sub-
bands, using a bank of low- and high-pass filters. Depending on the choice of
the filters, one obtains different types of wavelets. We tested eight wavelets:
Quadratic mirror filter (QMF) wavelets of size 5, 9 and 13, Daubechies wavelets
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Fig. 5. Result of the data preparation phase: Three different depth images of the same
person aligned to a frontal position (aligned color/depth image in resp. right column).

of size 2, 3 and 4, and bi-orthogonal CDF wavelets of size 5/3 and 9/7. The
structure of the wavelet-transformed images is shown in Figure 6 where L and H
refer to low-pass or high-pass filtering in either horizontal or vertical direction.
The number refers to the level (octave) of the filtering. At each level, the low
pass sub-band (LL) is recursively filtered using the same scheme.

The low frequency sub-band LL contains most of the energy of the original
image and represents a down-sampled low resolution version. The higher fre-
quency sub-bands contain detail information of the image in horizontal (LH),
vertical (HL) and diagonal (HH) directions. The distribution of the wavelet co-
efficient magnitudes in each sub-band are characterized by a histogram. Thus,
the entire recording is represented by a feature vector that consists of the his-
tograms of all sub-bands of the depth and the color image. Note that the wavelet
coefficients of each sub-band are uncorrelated. Hence, it makes sense to train in-
dividual classifiers for each sub-band (referred to as weak classifiers) which are
subsequently combined into a strong classifier by the AdaBoost algorithm. Our
weak classifiers are simple thresholds on a similarity metric between sub-band
histograms. We tested two types of similarity metrics: (1) the χ2-metric for
histograms, and (2) the Kullback-Leibler (KL) divergence of of a generalized
Gaussian density (GGD) functions fitted to the histogram.

4.1 χ2-metric

The distribution of the wavelet coefficients of each sub-band is represented in a
histogram. In order to find the optimal bin size for the histograms we used the
method of [13] according to which the optimal bin size h is given by

h = 2(Q0.75 −Q0.25)/ 3
√
n (1)

where Q0.25 and Q0.75 are the 1/4- and 3/4-quantiles and n is the number of
recordings in the training data base. The χ2-metric computes the distance d
between two sub-band histograms H1 and H2 with N bins as

d(H1, H2) =

N∑
i=1

(H1 (i)−H2 (i))
2

H1 (i) +H2 (i)
. (2)
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Fig. 6. The sub-band labeling scheme for a three level 2D wavelet transformation.

4.2 KL Divergence between Generalized Gaussian Density
Functions

As an alternative to the χ2-metric, we tested a generalized Gaussian density
(GGD) based method [14]. This method defines an individual GGD function that
is fitted to the coefficient distribution of a sub-band of the wavelet transform.
The optimal fit is obtained from maximizing the likelihood using the Newton-
Raphson method [14–16]. The distance between two GGD functions is estimated
by the Kullback-Leibler divergence [17].

4.3 The AdaBoost Algorithm

The concept of boosting algorithms is to combine multiple weak classifiers to
yield a strong classifier that solves the decision problem. The idea is that it is
often easier to find several simple rules for a decision instead of one complex rule.
The AdaBoost algorithm uses a training data set to build a strong classifier out
of weak classifiers that solve binary decisions. For this purpose, the algorithm
needs weak classifiers with a success rate of at least 50% on the training data with
independent errors. Then, the AdaBoost algorithm can be shown to improve the
error rate by computing an optimal weight for each weak classifier.

Let yi = hi(x) denote the output of the i-th of the M weak classifiers to the
input x, and αi the weight of hi(x) generated by the AdaBoost algorithm. Then,
the strong classifier is given by [18]

H (x) = sign

(
M∑
i=1

αihi (x)

)
. (3)
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5 Results

For training and testing we collected a data base of approximately 500 depth
images from 40 different persons. For some persons the images were taken at dif-
ferent times, with different lighting, different positions with respect to the cam-
era system, different facial expressions (open/closed mouth, smiling/not smiling,
open/closed eyes) and different facial details (glasses/no glasses). Some example
images are shown in Figure 7.

Fig. 7. Example images from our data base used for training and testing of the Ad-
aBoost algorithm.

The results of our recognition system are shown in the receiver operating
characteristic (ROC) diagrams in Figure 9 and Table 1. The system was tested
with different wavelet transform levels and different wavelet filters. Note that, if
the weak classifier are too strong or too complex, boosting might fail to improve
the recognition, cf. [19]. An indicator for this behavior is a quick decrease of the
error rate in the training phase. The error rate in the training phase compared
to the number of weak classifiers is illustrated in Figure 8. Here, in the first
wavelet level the error rate starts very low and strong classifiers improve rela-
tively slow. At wavelet level three the error rate starts higher and the boosting
finds more weak classifiers to improve the error rate more effectively. Hence, a
more robust and more reliable result is achieved in the third level of the wavelet
decomposition.

Table 1 shows that the choice of the used wavelet filter does influence the
result clearly. The best result is achieved with the cdf53/cdf97 filter and wavelet
transformation at level three. χ2-histogram-comparison and GGD fitting yield
similar results. Since the former is computationally more efficient we use this
metric in the current version of our system for faster response times.

The recognition results are shown in Figure 9. The detection rates between
95% and 97% for the low false positive rate of 2% to 3% are obtained at the
point of the minimal overall error of the ROC curve. The AdaBoost combination
(3d face) of all sub-bands yields the best decision at levels two and three. At
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Table 1. Results with our approach after 3-fold cross validation with different wavelet
transformation levels and wavelet filters.

filter level=1 level=2 level=3
qmf5 0,9831 0,9898 0,9898
qmf9 0,9848 0,9897 0,9884
qmf13 0,9817 0,9890 0,9895
daub2 0,9798 0,9877 0,9892
daub3 0,9843 0,9859 0,9898
daub4 0,9877 0,9873 0,9891
cdf53 0,9847 0,9893 0,9914
cdf97 0,9836 0,9900 0,9912

Mean 0,9837 0,9886 0,9898
Std 0,0023 0,0015 0,0010

Fig. 8. Classification error versus number of weak classifiers at level one and three of
the wavelet decomposition.

wavelet level four, the sub-bands are getting too small and the final AdaBoost
classificator is not effective.

For the presented results, we use the FireWire camera system from [1]. Color
images and depth maps from this system have a resolution of 1392×1032 pixels.
Currently the overall recognition time is 1.086 seconds with the χ2-metric. This
includes the 3d reconstruction (263 ms [1]), the data preparation (731 ms), and
the face recognition (χ2 method - level 3 - 92ms). The most time is consumed
by the data preparation which takes approximately 65% of the overall time. We
are working here on further improvements on the ICP algorithm, e.g. finding a
better initial guess.

6 Conclusion and Future Work

Our analysis shows that the proposed system has a satisfying face recognition
performance which is competitive to other systems, cf. [20]. A special advantage
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Fig. 9. ROC curves for different wavelet transformation levels. At each level the four
sub-bands LH, HL, HH, and LL for the depth (D ) and color (C ) images and their com-
bination with AdaBoost (3d face) are shown.

of our system is that it requires only one single reference depth image per person.
Other systems often need more than one reference image without obtaining
better ROC curves than ours, e.g. [7, 8]. Since the quality of the 3d model,
colors, and shadows in the 2D images critically depend on the lighting of the
faces, we expect that the performance of the current system can be significantly
improved by controlling the lighting conditions.

All computations take about one second which is acceptable for a biometric
system. This computation time also allows for taking several subsequent im-
ages to improve the detection rate. However, we are still working on various
optimizations, especially for the data preparation phase that will further reduce
processing time.
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