
Accurate Real-Time Multi-Camera Stereo-
Matching on the GPU for 3D Reconstruction

Klaus Denker
HTWG Konstanz, Germany
kdenker@htwg-konstanz.de

Georg Umlauf
HTWG Konstanz, Germany
umlauf@htwg-konstanz.de

ABSTRACT

Using multi-camera matching techniques for 3d reconstruction there is usually the trade-off between the quality of the computed
depth map and the speed of the computations. Whereas high quality matching methods take several seconds to several minutes
to compute a depth map for one set of images, real-time methods achieve only low quality results. In this paper we present a
multi-camera matching method that runs in real-time and yields high resolution depth maps.
Our method is based on a novel multi-level combination of normalized cross correlation, deformed matching windows based
on the multi-level depth map information, and sub-pixel precise disparity maps. The whole process is implemented completely
on the GPU. With this approach we can process four 0.7 megapixel images in 129 milliseconds to a full resolution 3d depth
map. Our technique is tailored for the recognition of non-technical shapes, because our target application is face recognition.

Keywords
Stereo-matching, multi-camera, real-time, gpu, computer vision.

1 INTRODUCTION
Stereo matching is a technique to compute depth infor-
mation of a captured object or environment from two
or more 2d camera images. Many applications ranging
from remote sensing to robotics, archeology, cultural
heritage, reverse engineering, and 3d face recognition
[15, 17, 10, 26] use stereo matching. It is the only
passive method to generate depth information. This
means there is no artificial interaction with the object
that might do any harm and only natural light is used
for the data acquisition.

The main challenge of stereo matching is the trade-
off between the quality of the depth map and the com-
putation time to compute the depth map. For some
applications a real-time computation is not important.
So many stereo- and multi-view-matching methods fo-
cus on high quality results instead of fast computation
times. These high quality methods need at least sev-
eral seconds to compute a single depth map from one
set of images [9]. However, for robotics faster compu-
tation times are more important than the quality of the
depth map. This led to the development of GPU based
real-time matching methods [28, 27].

Our target application is 3d face recognition. For face
recognition the requirements are somewhere between
these fields. A trade-off between a high depth map qual-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ity and an acceptable speed must be found. The whole
reconstruction and recognition needs to be done in less
than half a second. A longer delay is not acceptable
for the captured person. Nevertheless, the quality of
the reconstructed surface needs to be high enough for a
reliable recognition of the person.

1.1 Overview and contribution
In order to classify our approach for the subsequent
related work section we give here a brief layout of
our system. It is based on weighted normalized cross-
correlation for all matching windows of a reference im-
age to a set of additional images from different perspec-
tives. This cross-correlation yields a score for every
matching window position and the maximal score in-
dicates the best matching position. This best matching
position corresponds to a disparity of the matching win-
dows and thus to the depth information. These steps
will be described in Sections 3 - 4. Our contribution
in this process is the GPU optimized use of weighted
normalized cross-correlations, the combination of mul-
tiple cameras to a total score for simultaneously moved
matching window, a projection-free depth-map-based
deformation of the matching windows, and a sub-pixel
precise disparity estimation. These techniques account
for the quality of the generated depth maps. To compute
the depth maps in real-time our process is implemented
on the GPU. This is described in Section 5 and has not
be done in such a consequent form before.

2 RELATED WORK
Our method may be classified between two very dif-
ferent classes of stereo matching methods. On the one
hand, the high quality methods with long computation
time to achieve excellent results. On the other hand,



the fast GPU methods using much simpler algorithms.
Therefore, we will contrast our approach to both classes
of stereo matching methods.

2.1 High quality methods
High quality stereo matching methods have been devel-
oped based on various techniques. The quality of such
methods is compared at [19, 21, 25]. Newer bench-
mark results are available on the associated websites
[20, 22, 24].

One of the earliest methods in this class is the adap-
tive least squares correlation of [6]. In this approach
local affine transformations are estimated using a least
squares approximation. Although, this method theoreti-
cally converges to an optimal solution, the convergence
is too slow and the computation too costly due to the
size of the linear systems.

Today, best reconstruction quality is achieved by re-
gion growing algorithms, e.g. [5, 9]. These methods
are typical for high quality matching algorithms, where
a set of good matches is generated using a sparse set of
interesting features. Then, these good matches are ex-
tended with a growing strategy. The growing operations
are iterated in combination with filter operations to con-
trol the quality of the matches. Because the growing
process is based on an optimization of complex objec-
tive functions, these methods do not allow a fast GPU
implementation.

A novel alternative is the phase only correlation of
[23]. Here, the disparity of matching windows is es-
timated by the phase difference of the image signal
along epipolar lines. This requires the computation of a
Fourier transformation, which is difficult to implement
on the GPU [14]. This is particularly problematic if the
Fourier transform must be evaluated for every pixel of
the captured image.

Global optimization of a Markov Random Field
(MRF) is used in [1]. For each pixel multiple depth hy-
potheses are stored and the best is picked by the MRF
optimization. The solution of this NP-hard problem
is approximated using a sequential tree re-weighted
message passing algorithm [11]. Although the GPU is
used to solve several steps of the algorithm, the global
optimization makes it much slower than typical GPU
methods.

A particle cloud optimization is used by [8] to gener-
ate depth representations for each camera image. The
particles are aware of depth discontinuous silhouettes
and use a special volumetric view space parametriza-
tion instead of the usual image-based parametrization
of matching windows. Then, these depth representa-
tions are combined and rendered in real-time using the
GPU.

Approaches based on dynamic programming, e.g.
[12, 18], are relatively similar to our approach. For
these methods fields of matching scores are computed

for every epipolar line. Within these fields an optimal
path is computed using dynamic programming. The
computations of the optimal path can either be done on
the CPU or on the GPU requiring significant amount of
memory.

Our approach is also based on matching scores along
epipolar lines, but the computations are local and sim-
ple to allow an implementation on the GPU.

2.2 GPU methods
Much faster methods implement the stereo-matching
algorithm on the GPU using hardware features of the
graphics card like mip-mapping.

A typical example for this class of methods is de-
scribed in [27]. This approach consists of a set of indi-
vidual steps of the overall stereo-matching process im-
plemented on the GPU. For the matching score either
the sum of squared differences or the sum of absolute
differences are used. These matching scores are easily
implemented on the GPU, but yield only low quality
disparity maps. To exploit the capabilities of the mip-
map a pyramidal matching kernel is used, which does
not allow for an independent movement of the individ-
ual levels in the pyramid. In both aspects our approach
improves this method. Some other aspects of [27], like
cross-checking and feature aligned matching windows,
could easily be integrated to our system.

A different approach of the same first author is [28].
Here five calibrated cameras are matched at once. Us-
ing the same technique with a reconfigurable array of
48 cameras is described in [30]. For this technique the
matching window covers only one pixel to simplify the
computations on the GPUs. This local approach is not
stable but very fast and avoids all disadvantages of large
matching windows.

Another technique for a large number of images is
[29]. It is not as fast as the other GPU methods, but
includes a volumetric reconstruction of the objects. A
plane sweep method is used for depth estimation on
non-rectified images.

The method from [2] uses the pyramidal matching
kernel and mip-mapping from [27] and adds a fore-
ground/background separation on the GPU. This addi-
tional step avoids typical artifacts of the pyramidal ker-
nel like wrong depth estimates for regions with low tex-
ture details usually found in the background. Our im-
proved multi-level approach does not show such prob-
lems.

3 THE CAMERA SYSTEMS
We built a system of four USB Logitech R© QuickCam R©

Pro 9000 cameras, see Figure 1(a). Each camera is used
at a resolution of 960× 720 at five frames per second.
The cameras could yield a much higher resolution, but
the bandwidth of the USB 2.0 controllers is limited.



To improve the quality for later face recognition,
we built a second camera system of four Point Grey
Flea R©2 FireWire 800 cameras, see Figure 1(b). These
cameras synchronously capture images at a resolution
of 1392× 1032 at 15 fps. For synchronization we use
all four cameras on a single FireWire 800 Bus. Thus,
in RGB mode only a frame rate of 3.75 fps is possible.
This can be improved by de-mosaicking on the GPU
and transferring the data in eight bit raw mode. This
allows for 11.25 fps.

Our experiments showed that a Y-constellation of
four cameras as shown in Figure 1 gives the best re-
sults. The image of the central camera is used as refer-
ence image for matching and texturing. Each possible
image pair has a different angle. Otherwise preferred
directions of the camera constellation could deteriorate
the detection of features along these directions, e.g. an
image containing horizontal stripes causes problems for
horizontal camera arrangements.

Independently of the used hardware system, our
method can be adapted to other camera constellations.
This adaption is much easier for camera systems where
all cameras are mounted on a plane perpendicular to
the viewing direction. The individual camera images
are rectified using a lens correction similar to [4].

4 MATCHING
The overall matching process consists of several nested
loops shown in Figure 3. We describe this process from
the inner to the outer loop.

4.1 Stereo matching
The aim of stereo matching is to find corresponding
points in two images. Usually two square regions,
called matching windows are compared. These win-
dows are moved over the images to find the best match-
ing position. To identify the best position, a score
is computed, that rates the similarity of two matching
windows. Similar to [13] we use a weighted normal-
ized cross-correlation on RGB color values. First the
weighted average color f i of the matching window Wi
in the i-th image is computed

f i = ∑
(x,y)∈Wi

w(x,y) f (x,y). (1)

Here w(x,y) = cos2 (πx/a) · cos2 (πy/a) is a weight
function that smooths the result to emphasize pixels
at the center of the matching window over pixels at
the border, and a denotes the matching window size in
pixels. Then the weighted auto-correlation αi of each
matching window with itself is computed as

αi = ∑
x,y

w(x,y)
[

fi(x,y)− f i
]2
. (2)

To evaluate the similarity of two matching windows Wi
and Wj the weighted cross-correlation βi, j is computed

βi, j = ∑
x,y

w(x,y)
[

fi(x,y)− f i
]
·
[

f j(x,y)− f j
]
. (3)

The weighted normalized score γi, j is computed as the
weighted cross-correlation normalized by the geomet-
ric mean of the respective weighted auto-correlations

γi, j = βi, j/
√

αi ·α j. (4)

4.2 Multi-camera matching
Stereo matching evaluates the similarity of two match-
ing windows. We extend this score to a set of n cameras
and matching windows by summing up the weighted
normalized scores of all possible image pairs. Thus, we
need n(n− 1)/2 stereo matching operations. To com-
pute a total score we compute a camera score

γi = ∑
j 6=i

γi j (5)

and a total score

γ = ∑
i

γi−2min
i

γi. (6)

This eliminates all scores from the worst matching cam-
era to improve robustness to occlusion on one of the
cameras. The total score is used to evaluate the similar-
ity of matching windows of multiple cameras simulta-
neously.

4.3 Moving the matching windows
Between the images a disparity estimation is computed
to get the depth information. Therefore, the matching
windows are moved simultaneously over all images. A
total score of each position and the best matching win-
dow position with the highest total score are computed.
Since the evaluation of all possible positions is too ex-
pensive, the movement of the matching window is lim-
ited to the epipolar lines projected by the center point
of the matching window of the reference image. The
image of the central camera is used as reference im-
age, i.e. the matching window on the central image is
fixed. Figure 2 shows the simultaneous movement of
the matching windows in the other images along the
epipolar lines. These movements along the epipolar
line have a step size of one pixel for our camera config-
uration. For other camera configurations the step size
depends linearly on the distance to the central camera.
We test 3≤ k≤ 35 different positions for each matching
window, see Section 4.5. Note that the color values for
the score computations are bi-linearly interpolated to
allow an exact movement along the epipolar line. The
best similarity of the matching windows is marked by
the matching window position with the highest score



(a) USB camera system. (b) FireWire camera system.

Figure 1: For our experiments we use two systems of four cameras arranged in an upside down Y-constellation.

Figure 2: Moving the matching windows (solid
squares) in all images (dashed rectangles) along epipo-
lar lines (arrows) simultaneously.

sbest. From the position on the epipolar line, the dispar-
ity dbest of the best match is estimated. The real depth
can be computed by reverse projection using the posi-
tion of the reference camera, the distances to the other
cameras, and the disparity.

4.4 Sub-pixel matching
To achieve sub-pixel precision for the disparity map we
use a method similar to sub-pixel accurate edge detec-
tion of [3]. The best disparity is achieved at a local max-
imum of the total score, i.e. both neighboring scores
sleft and sright are smaller or at most one of them is equal
to sbest

sleft ≤ sbest > sright or sleft < sbest ≥ sright. (7)

Interpolating these three total scores with a quadratic
polynomial yields a best sub-pixel score at the global
maximum of the quadratic polynomial. This maximum
is achieved within half the distance to the neighbor po-
sitions. The position of this maximum is the interpo-
lated sub-pixel disparity dsub.

4.5 Multi-level matching
Our method generates disparity data for one image at a
fixed resolution. To allow large disparities, many possi-

ble matching window positions must be evaluated. Be-
cause this is computationally expensive, we use a real
multi-level approach that can reduce the effort for large
disparities. A similar approach in [27] uses a matching
pyramid. In contrast to our method, the windows on
different detail levels cannot be moved independently.

Independent levels allow us to re-use high level in-
formation to get a much faster low level disparity com-
putation. The graphics card stores the lens corrected
image in a mip-map at eight different resolutions. Each
level has half the horizontal and vertical resolution of
the one below. All matching windows have a fixed size
of 7× 7 pixels. A smaller window size increases the
noise while a larger size blurs sharp features. Start-
ing on the coarsest resolution level l = 7, the dispari-
ties of all pixels in the reference images are computed
at the same coarse resolution. The matching windows
are evaluated at k = 35 different positions. Then the
image resolution is doubled and the same process starts
again, while k = 1+ 2b1.5+ l2/3c is reduced quadrat-
ically. As starting position for the matching windows
on lower levels, the bi-linearly interpolated disparities
of the next coarser level are used. Thus, the matching
window moves k pixels around the best position of the
previous level.

4.6 Deformed matching windows
Square matching windows can only yield good results,
if the captured object surface is parallel to the image
plane. Every surface not parallel to the image plane
generates imprecision. To avoid this the matching win-
dows are deformed to fit the perspective deformation of
the object surface. The idea is based on [7], but we use
the multi-level depth information and a projection free
computation.

To estimate the deformation we use the disparity map
of the previous multi-level step. First nine disparity val-
ues at the corners, the edge midpoints, and the center of
the matching window are interpolated. This gives a dis-
parity estimate for every pixel in the actual matching



Multiple mip-
mapped textures

Multiple textures on
the same detail level

Position in
reference image

Multiple matching
windows

Two matching windows

Normalized
cross correlation

Score for pair of
matching windows

Score for multiple
matching windows

Best match for
one depth pixel

Disparity map on
one detail level

Full resolution
disparity map

fo
re

ac
h

im
ag

e
pa

ir

m
ov

e
m

at
ch

in
g

w
in

do
w

s

fo
re

ac
h

pi
xe

lo
fr

ef
er

en
ce

im
ag

e

ne
xt

de
ta

il
le

ve
l–

do
ub

le
re

so
lu

tio
n

Figure 3: Overview of our matching process.

window. Subtracting the disparity at the center of the
matching window yields a local displacement for every
pixel. This displacement is added to the pixel coordi-
nates before the color values are read. This results in
a matching window adapted to the perspective of the
previous level without computing any perspective pro-
jections. Note, that for planar object surfaces this ap-
proach is almost equivalent to the projections used by
[7]. The difference is that it is based on disparity instead
of depth.

4.7 Measuring the matching quality
For each resolution level a complete disparity map is
computed. So, for each pixel of this map the best to-
tal score computed is also stored. Averaging these to-
tal scores over multiple resolution levels gives a quality
measure for each pixel of the full resolution depth map,
see Figure 4(b). Pixels with low quality measures can
be masked for rendering or subsequent computations of
the user application.

The quality measure is also used to improve the per-
formance of the multi-level matching. A low quality
measure on a coarse matching step usually causes the
finer level matches in this region to fail too. Matching
calculations are skipped if the quality measure on the
next coarser level is too low.

5 IMPLEMENTATION ON THE GPU
The method described so far uses images and generates
a depth image as result. Therefore, we use GLSL frag-
ment shaders for the GPU implementation. A fragment

shader is a program that runs in parallel on the GPU and
processes one or multiple texture images into one result
image. For our shader operations we need GPUs which
support at least shader model 4.0. The required amount
of computations in a single shader run is not feasible on
older GPUs.

5.1 GPU lens correction
Our input data are multiple raw camera images. Each
raw image is corrected by a shader implementing a lens
correction similar to [4]. The resulting corrected im-
ages are rendered into separate textures. Each of these
textures is then transformed into a mip-map. These
mip-maps of the corrected images are used by all sub-
sequent shaders of our system.

5.2 GPU optimized matching
A single pixel shader run usually computes the color
values for one result image, each pixel separately. More
complex computations require the combination of mul-
tiple shader runs. Three fragment shader programs are
used for each step of our multi-level matching.

The first shader takes the corrected image mip-map
and computes the weighted average color of the pix-
els of a matching window at the actual resolution level.
These averages are rendered to separate average tex-
tures. This shader is invoked once for every image.

The second shader takes the corrected image mip-
map and the average texture and computes the weighted
auto-correlation for the same matching window. Again



(a) The four captured sample images.

(b) Result textures. Disparity map (left) and quality measure (right).

(c) Reconstructed 3d model.

Figure 4: Example from our USB camera system.

the result is rendered to a separate auto-correlation tex-
ture and the shader is invoked once for every image.

The third shader takes the average and auto-
correlation textures and performs all matching
operations, i.e. it moves the deformed matching
windows, computes the total score, and finds the best
sub-pixel score. The result is rendered as the disparity
map, the best total score of the finest resolution and
the quality measure to the three color channels of a
separate texture. These three shaders are invoked once
per resolution level.

Most important strategies used to improve the GPU
performance are the pre-calculation of weighted aver-
age and weighted auto-correlation just described and
the multi-level matching described in Section 4.5.

6 RESULTS

Our target application is face recognition. We present
our results in that area. For easier comparison with
other algorithms we also applied our algorithm to a well
known benchmark for stereo matching.

(a) The four captured sample images.

(b) Result textures. Disparity map (left) and quality measure (right).

(c) Reconstructed 3d model.

Figure 5: Example from our FireWire camera system.

6.1 Face reconstruction

We took some example images with our USB camera
system shown in Figure 4(a). The disparities between
these images are very large. The result texture of the
fragment shaders holds the disparity map, the best to-
tal score of the finest resolution level, and the quality
measure encoded in the color channels, see Figure 4(b).

After transformation of the disparities to depth val-
ues, the data can be rendered as 3d model, see Fig-
ure 4(c). The low quality regions are masked and ig-
nored in this rendering.

A typical problem of stereo matching can be seen at
the highlights on the forehead generating small dents,
because the reflection is further away from the cameras
than the forehead. More diffuse lighting could avoid
this problem. The computation for the example im-
ages takes an average processing time of 129 ms on an
NVidia GeForce GTX 285 GPU. This allows real-time
frame rates of 7.5 fps.

A higher resolution of 1392× 1032 is achieved by
the FireWire camera system. An example image set is
shown in Figure 5(a). Figure 5(b) shows the result tex-
tures and Figure 5(c) a 3d model of the resulting depth



map. The higher camera resolution yields a better shape
quality at the most important regions of the face. Espe-
cially the reconstruction of the eye and mouth regions
is much more precise.

For this example an average processing time of 263
ms is needed on the same GPU. For images of 30 dif-
ferent persons we get an average processing time of
254 ms. In most of these images the face region is
smaller than in the displayed examples, so the compu-
tations are a bit faster. In comparison to the first exam-
ple, the computation time grows almost linearly with
the number of pixels p. This conforms to a runtime
of O(p log p) for our multi-level algorithm: The match-
ing window size, the stretch of the window movement,
and the count of image pairs are constant. So the worst
case costs for the computations in each depth map pixel
is constant. The pixels of the resulting depth map, or
smaller versions of it, are computed once for each of
the log2(width)∈O(log p) multi-level steps. Hence the
overall count of pixel calculations and the complexity
of the algorithm is within O(p log p).

6.2 Stereo vision benchmarks
Several benchmarks can be used to compare the qual-
ity of stereo matching algorithms [19, 21, 25]. Our al-
gorithm is tailored to face reconstruction and contains
simplifications that require a planar camera configura-
tion. Thus, it is not comparable to the benchmark [25].
Furthermore, our algorithm is also tailored to large dis-
parities between the images and achieves a much bet-
ter reconstruction quality using more than two cameras.
So, only a comparison with the results of the extended
datasets of the Middlebury stereo benchmark [20] is rel-
atively fair. However, this benchmark does not provide
an official score.

Compared to the algorithms providing results and
timings for these benchmark our algorithm works much
faster. At the same time the quality of our result is com-
parable to the quality of these algorithms. However, for
this comparison we have to adapt our algorithm.

For the Middlebury stereo evaluation [20], we in-
tegrated a modified local version of Multi Hypothe-
sis Matching [1] to improve the sharpness of edges in
our algorithm. The movement range of the matching
windows is extended to the depth extrema of the local
neighborhood on the last detail level. Instead of evalu-
ating only the best matching score, the eight best match-
ing scores are stored. A post-processing step re-weights
these scores based on the values and depth distances to
the best scores in the direct pixel neighborhood. The re-
weighting is repeated two times without any global op-
timization as in [1]. This multi hypothesis matching is
implemented as an post-processing fragment shader on
the GPU. The additional shader and the increased range
for the matching windows cause a large performance
loss. Processing our example images at a resolution of

960× 720 pixels takes 900 ms. This is still faster than
the other algorithms in [20], but not fast enough for our
target application.

Figure 6 shows our algorithm applied to the extended
Tsukuba dataset from [20, 16]. The two images in Fig-
ure 6(b) show the results from all five input images
without and with the additional edge improvement.

7 CONCLUSION AND FUTURE
WORK

The quality of the resulting surface model is sufficient
and the processing times are more than sufficient for
our target application 3d face recognition. Additional
methods like cross-checking that can be implemented
on the GPU could further improve our results. Further-
more, for an application of our method in a face recog-
nition system, a simple method to guide persons to the
optimal distance from the camera system is required.

For the future we plan to record synchronous video
sequences with the FireWire camera system. Similar to
multi-level matching, the matching information of an
earlier video frame could be used to improve the per-
formance.

ACKNOWLEDGMENTS
This work was supported by DFG GK 1131 and AiF
ZIM Project KF 2372101SS9. We thank Jens Hensler
for his help on creating a collection of face pictures.

REFERENCES
[1] Neill D. Campbell, George Vogiatzis, Carlos Hernández, and

Roberto Cipolla. Using multiple hypotheses to improve depth-
maps for multi-view stereo. In Proc. of the 10th European
Conf. on Computer Vision, pages 766–779, 2008.

[2] Jia-Ching Cheng and Shin-Jang Feng. A real-time multiresolu-
tional stereo matching algorithm. In ICIP (3), pages 373–376,
2005.

[3] F. Devernay. A non-maxima suppression method for edge de-
tection with sub-pixel accuracy. Technical Report RR-2724,
INRIA, 1995.

[4] F. Devernay and O. Faugeras. Straight lines have to be straight:
automatic calibration and removal of distortion from scenes of
structured enviroments. Mach. Vision Appl., 13(1):14–24, 2001.

[5] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and ro-
bust multi-view stereopsis. In CVPR, pages 1–8, 2007.

[6] A W Gruen. Adaptive least squares correlation: A powerful im-
age matching technique. South African Journal of Photogram-
metry, Remote Sensing and Cartography, 14:175–187, 1985.

[7] Hiroshi Hattori and Atsuto Maki. Stereo matching with direct
surface orientation recovery. In In Ninth British Machine Vision
Conference, pages 356–366, 1998.

[8] Alexander Hornung and Leif Kobbelt. Interactive pixel-
accurate free viewpoint rendering from images with silhou-
ette aware sampling. Comp. Graph. Forum, 28(8):2090–2103,
2009.

[9] Andreas Klaus, Mario Sormann, and Konrad Karner. Segment-
based stereo matching using belief propagation and a self-
adapting dissimilarity measure. In Proc. of the 18th
Int. Conf. on Pattern Recognition, pages 15–18, 2006.



(a) The extended Tsukuba dataset pictures.

(b) Result disparity map of our algorithm without (left) and with edge
enhancement (right).

(c) Ground truth disparity map (left) and 3d rendering of the result
with edge enhancement (right).

Figure 6: Results of the extended Tsukuba dataset from the Middlebury stereo benchmark [20].

[10] Reinhard Koch, Marc Pollefeys, and Luc Van Gool. Realis-
tic 3-d scene modeling from uncalibrated image sequences. In
ICIP’99, Kobe: Japan, pages 500–504, 1999.

[11] Vladimir Kolmogorov. Convergent tree-reweighted message
passing for energy minimization. IEEE Trans. Pattern Anal.
Mach. Intell., 28(10):1568–1583, 2006.

[12] Cheng Lei, Jason Selzer, and Yee-Hong Yang. Region-tree
based stereo using dynamic programming optimization. In
Proc. of the 2006 IEEE Conf. on Computer Vision and Pattern
Recognition, pages 2378–2385, 2006.

[13] J. P. Lewis. Fast template matching. In Vision Interface, pages
120–123, 1995.

[14] Kenneth Moreland and Edward Angel. The FFT on a GPU. In
Proc. of the ACM Conf. on Graphics Hardware, pages 112–119,
2003.

[15] Don Murray and Jim Little. Using real-time stereo vision for
mobile robot navigation. In Autonomous Robots, pages 161–
171, 2000.

[16] Yuichi Nakamura, Tomohiko Matsuura, Kiyohide Satoh, and
Yuichi Ohta. Occlusion detectable stereo – occlusion patterns
in camera matrix. In CVPR, pages 371–378, 1996.

[17] D.T. Pham and L.C. Hieu. Reverse engineering - hardware and
software. In V. Raja and K.J. Fernandes, editors, Reverse En-
gineering - An Industrial Perspective, pages 33–30. Springer,
2008.

[18] H. Sadeghi, P. Moallem, and S. A. Monadjemi. Feature based
dense stereo matching using dynamic programming and color.
International Journal of Computational Intelligence, 4(3):179–
186, 2008.

[19] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. Int. J. Com-
put. Vision, 47(1-3):7–42, 2002.

[20] D. Scharstein and R. Szeliski. Middlebury stereo vision page.
http://vision.middlebury.edu/stereo/, 2007.

[21] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo reconstruc-
tion algorithms. In Proc. of the 2006 IEEE Conf. on Computer
Vision and Pattern Recognition, pages 519–528, 2006.

[22] Steve Seitz, Brian Curless, James Diebel, Daniel Scharstein,
and Richard Szeliski. Multi-view stereo.
http://vision.middlebury.edu/mview/, 2009.

[23] T. Shibahara, T. Aoki, H. Nakajima, and K. Kobayashi. A sub-
pixel stereo correspondence technique based on 1d phase-only
correlation. In ICIP07, pages 221–224, 2007.

[24] Christoph Strecha. Multi-view stereo test images.
http://cvlab.epfl.ch/~strecha/multiview/,
2008.

[25] Christoph Strecha, Wolfgang von Hansen, Luc J. Van Gool,
Pascal Fua, and Ulrich Thoennessen. On benchmarking camera
calibration and multi-view stereo for high resolution imagery.
In CVPR, pages 1–8. IEEE Computer Society, 2008.

[26] Francesca Voltolini, Sabry El-Hakim, Fabio Remondino, and
Lorenzo Gonzo. Effective high resolution 3d geometric recon-
struction of heritage and archaeological sites from images. In
Proc. of the 35th CAA Conference, pages 43–50, 2007.

[27] Ruigang Yang and Marc Pollefeys. A versatile stereo imple-
mentation on commodity graphics hardware. Real-Time Imag-
ing, 11(1):7–18, 2005.

[28] Ruigang Yang, Greg Welch, and Gary Bishop. Real-time
consensus-based scene reconstruction using commodity graph-
ics hardware. In Proc. of the 10th Pacific Conf. on Computer
Graphics and Applications, pages 225–235, 2002.

[29] Christopher Zach, Mario Sormann, and Konrad F. Karner.
High-performance multi-view reconstruction. In 3DPVT, pages
113–120, 2006.

[30] Cha Zhang and Tsuhan Chen. A self-reconfigurable camera
array. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Sketches,
page 151, 2004.


